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Abstract. We have previously presented a nonperturbative quantum electrodynamic approach to
the atom–light system, and solved it by nonperturbative treatment limited to the electron–photon
interactions only. In this paper, we solve the equation of motion, a time-independent Schrödinger-
like equation for the combined atom–photon-mode system, nonperturbatively for both the atomic
Coulomb potential and the photon mode, by employing a Born–Oppenheimer approximation in
momentum space. The solution obtained is the direct product of a photonic part, representing a
stimulated photon cloud dressing the electron, and an electronic part, as if the atomic potential is
distorted. For atoms with known spectra and wavefunctions, the integral equation for the distorted
atomic wavefunctions is reduced to a solvable set of linear algebraic equations with explicitly
determined coefficients. Applications of this result are also discussed.

1. Introduction

The theoretical study of atoms interacting with light is a fundamental problem in physics.
Experiments show that multi-photon processes dominate the phenomena in strong laser fields
and the traditional perturbative description breaks down. Volkov first obtained exact and
analytical solutions for an otherwise free electron interacting with a multicolour, linearly
polarized classical plane light wave in 1935 [1]. These solutions have been found very useful
in describing photoelectrons produced in multi-photon ionization (MPI) in strong laser fields
since Keldysh’s pioneering work in 1964 [2]. But applications of these solutions are limited
to the cases where the atomic Coulomb effects can be ignored, such as the photoelectrons
forming high above-threshold ionization (ATI) energy peaks. They cannot be used to describe
the photoelectrons forming low ATI energy peaks in short pulses, because the fine structure
of the low ATI peaks clearly shows atomic Coulomb effects [3]. Also, they cannot be used
to describe an atomic bound electron interacting with light. Thus, the proper method of
generalizing the Volkov wavefunctions to the cases where the electron interacts with both an
atomic Coulomb potential and an electromagnetic wave has been a challenging problem for
physicists for many decades. This is the so-called Volkov–Coulomb problem.

In most previous treatments to this problem, except our development of a nonperturbative
quantum electrodynamic approach (NPQED) (see below), the external radiation field was
treated as a time-dependent, classical plane-wave background, resulting in a quantum
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mechanical problem with two potentials, one of which is time-dependent. Due to tremendous
mathematical difficulties in solving the time-dependent, two-potential problem, there seemed
no hope in obtaining an exact and analytical treatment. Various approximate schemes have been
suggested or applied [2, 4–8]. In his original paper [2], Keldysh proposed approximating the
Volkov–Coulomb wavefunction with a product of the atomic wavefunction and the Volkov
wavefunction in the coordinate space. (See [4] for another attempt to justify a similar
dressing of atomic states by Volkov wavefunctions.) Other approximations, such as the dipole
approximation, the high-frequency limit etc, have also been applied to the Volkov–Coulomb
problem. More direct approaches include the Floquet approach [5] and numerical solutions
to the time-dependent Schrödinger equation [6]. We note that in some approaches, the use of
momentum space plays a special role. For example, in Faisal’s pioneering work, the dressed
part of the wavefunctions contained a momentum operator, which should be equivalent to
wavefunctions dressed in the momentum space [7]. Janjusevic and Mittleman [8] applied
the phase representation to the two-potential problem and obtained an integral equation in
momentum space within some approximation.

NPQED has made notable advances during recent years both in theoretical formulation and
in explaining experiments [10]. The purposes of developing a NPQED approach to physics
in strong laser fields are the following: (1) to apply the time-independent formalism—the
light field is no longer treated as a time-dependent classical field, rather the electron and the
laser mode are treated as a coupled dynamical system, which can have stationary states with
definite energy and momentum; (2) to establish a correct classical field description to multi-
photon phenomena as a limiting case of a rigorous quantum theory; and (3) to search for
possible quantum field effects if there are any. Exact and analytical solutions play a key role
in NPQED.

In the relativistic regime, exact algebraic solutions to the Dirac equation for an
electron interacting with quantized, circularly polarized, single-mode light was obtained by
Filipowicz [10]. Soon, the exact algebraic solutions were generalized to the case of elliptically
or arbitrarily polarized, single-mode light by Guo and Åberg [9], and the large photon-number
limit of these solutions was obtained and applied to real physics problems such as MPI. The
limiting solutions, obtained by the large photon limit, possess classical light-field intensity,
so can be called quantum-field Volkov states (QFVS) [9]. The exact algebraic solutions have
been further generalized to the case of multi-mode, unidirectional light [11].

In the nonrelativistic (NR) regime, these solutions were generalized to multi-mode, with
multiple propagation directions, and elliptically polarized light [12]. For bound states in a
photon field, solutions were obtained only in the case of a force satisfying Hooke’s law [13].
The NR QFVS solutions were found by solving the Schrödinger eigenvalue equation with a
mathematical ansatz [12]. The ansatz was removed by the introduction of a Schrödinger-like
equation [13]. As an outcome, some corrections were found to earlier NR QFVS solutions [15].

In this paper, we extend the Schrödinger-like equation in QED to the case of an atomic
electron by including the atomic potential in the combined electron–laser-mode system. We
solve this equation in a Born–Oppenheimer approximation (BOA) [16] in momentum space,
where the photon mode is treated as rapidly varying degrees of freedom, while treating the
electron’s motion as slowly varying ones. The wavefunctions in momentum space are a
direct product of a photonic part and an electronic part. For a given electron momentum, the
photonic part of the wavefunction is the same as the one for an otherwise free electron in a
photon field [10]. The physical picture is that stimulated electron–photon interactions dress
the atomic electron with a photon cloud, while distorting the atomic wavefunctions as if the
atomic potential is modified by the light field [17, 18].

Moreover, we show that within the BOA, the atomic potential is dressed by a universal
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distortion factor in momentum space. By exploring this feature, the Volkov–Coulomb problem
is solved much further, and with less approximation, than the usual time-dependent methods, in
which one attacks the two-potential problem in coordinate space directly. Namely, we utilize
all the previous achievements in atomic physics as input for computing the radial wavefunctions
in both coordinate space and momentum space. When the atomic wavefunctions in a central
potential are known, we use them to expand the distorted wavefunctions, and reduce the integral
equation in momentum space to a solvable set of linear algebraic equations, with coefficients
explicitly computed from the universal distortion factor and the undistorted wavefunctions.
In this way, within the BOA, the answer to the Volkov–Coulomb problem is obtained as the
solution of the set of these algebraic equations, even without knowledge of the explicit form of
the atomic potential. This is particularly suitable for the cases when the atomic wavefunctions
are constructed by self-consistent numerical methods.

2. Schrödinger-like equation for the Volkov–Coulomb problem

Here, we first briefly review the Schrödinger-like equation recently developed [14] for a NR,
quantum mechanical electron interacting with a single-mode, second-quantized photon field.
In the following we use the Schrödinger picture for the combined electron and laser-mode
system, namely the laser mode is described by the time-independent operator

A(−k · r) = g(εeik·ra + ε∗e−ik·ra†)

where the polarization vectors satisfy

ε · ε∗ = 1 ε · ε = cos ξei� ε∗ · ε∗ = cos ξe−i�.

Here, g = (2Vγω)−1/2, and Vγ is the normalization volume of the photon field. We adopt
natural units (h̄ = c = 1) throughout the paper.

According to quantum electrodynamics, the stationary states of the combined system are
determined by the well known Dirac equation:

[α · (−i∇) + βme + ωNa − eα · A(−k · r) + U(r)]�(r) = p0�(r).

Here, Na = 1
2 (aa

† + a†a). The crucial point for quantum electrodynamics is that upon
carrying out the NR approximation for the electron, one does not obtain the usual form of the
Schrödinger equation, since now the vector potential contains the noncommuting operators a
and a†. The procedure of carrying out the NR approximation for the electron is still the same
as usual: separate the large and small components of the Dirac spinor and ignore the magnetic
interactions involving the Pauli matrices, etc. Being careful with the noncommuting operators,
in [14], we have shown that for an otherwise free, NR electron, i.e. U(r) = 0, the above Dirac
equation reduces to the following Schrödinger-like equation:{

1

2me
[−i∇ − eA(−k · r)]2 + ωNa

}
�(r) = E(Na)�(r) (1)

where

E(Na) ≡ 1

2me
[(p0 − ωNa)

2 −m2
e] + ωNa. (1′)

With the inclusion of an atomic potentialU(r), we substitutep0 → p0−U in equation (1′).
In accordance with the NR approximation, we assume that |U(r)| 
 me in the region where
the wavefunction is non-negligible. Therefore, upon expanding (p0 − ωNa − U)2 we can
ignore the U 2 term, and use the approximation p0 − ωNa ≈ me in the term linear in U . In
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this way, one derives the following Schrödinger-like equation for the combined electron-laser
mode system: {

1

2me
[−i∇ − eA(−k · r)]2 + ωNa + U(r)

}
�(r) = E(Na)�(r) (2)

where E(Na) is the same as in equation (1′). Note the appearance of the photon number operator
in the factor E(Na) on the right-hand side. We emphasize that in quantum electrodynamics,
this is the correct equation of motion for a NR, quantum mechanical electron interacting with a
single-mode, second-quantized photon field. This equation keeps the photon field relativistic,
while treating the electron nonrelativistically.

3. The integral equation in the momentum space

Now let us proceed to solve the Schrödinger-like equation (2). As shown in our earlier work,
we first make a canonical transformation [9, 14]

�(r) = e−ik·rNaφ(r) (3)

to eliminate the coordinate dependence of the vector potential. Equation (2) then becomes{
1

2me
(−i∇ − kNa)

2 − e

2me
[(−i∇) · A + A · (−i∇)]

+
e2A2

2me
+ ωNa + U(r)

}
φ(r) = E(Na)φ(r) (4)

where k · A = 0 by transversality. Here, A is coordinate independent and defined as

A = eik·rNaA(−k · r)e−ik·rNa = g(εa + ε∗a†). (5)

The equation further simplifies to

{(−i∇)2 − 2e(−i∇) · A + e2A2 + 2[p0ω − (−i∇) · k]Na + 2meU(r)}φ(r)
= (p2

0 −m2
e)φ(r). (6)

Now we introduce the Fourier transformation

φ(p) =
∫

d3r φ(r)e−ip·r φ(r) =
∫

d3p

(2π)3
φ(p)eip·r (7)

by which equation (6) is transformed into an integral equation in momentum space:

[p2 − 2ep · A + e2A2 + 2(p0ω − p · k)Na]φ(p) + 2me

∫
d3p′

(2π)3
U(p − p′)φ(p′)

= (p2
0 −m2

e)φ(p). (8)

Following the standard procedure, we first carry out a ‘squeezed light’ transformation

a = cosh χc + sinh χe−i�c†

a† = sinh χei�c + cosh χc† (9)

where

χ = −1

2
tanh−1

(
e2g2 cos ξ

p0ω − p · k + e2g2

)
(10)

to eliminate the quadratic terms of the photon operators. Thus, the integral equation becomes

[p2 − 2egp · (εcc + ε∗
cc

†) + 2CNc]φ(p) + 2me

∫
d3p′

(2π)3
U(p − p′)φ(p′) = (p2

0 −m2
e)φ(p)

(11)
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where

C ≡ [(p0ω − p · k + e2g2)2 − e4g4 cos2 ξ ]
1
2 . (12)

Next, we carry out a ‘coherent light’ transformation

c = d + δ c† = d† + δ∗ (13)

with δ = egp · εc
∗/C, to eliminate the linear terms of the photon operators. The equation

further simplifies as

[p2 + 2CNd − 2e2g2(p · εc)(p · ε∗
c )C

−1]φ(p) + 2me

∫
d3p′

(2π)3
U(p − p′)φ(p′)

= (p2
0 −m2

e)φ(p) (14)

which only contains the terms of the number operator and the identity operator in photonic
Hilbert space.

Up to now, all the steps have been rigorous. To proceed, we make an ansatz that separates
the wavefunction into two factors, a photonic part and an electronic part in momentum space:

φ(p) = |n〉dψ(p) (15)

where |n〉d is an eigenstate of the number operator of d-photons

|n〉d = d†n

√
n!

|0〉d

|0〉d = exp(−δ∗c + δc†)(cosh χ)−
1
2

∞∑
s=0

(tanh χ)s
(
(2s − 1)!!

(2s)!!

) 1
2

e−is�|2s〉.
(16)

Here, |2s〉 is the eigenstate of the number operator Na , i.e. the original Fock state, with 2s
photons. Note that the state |n〉d has, through the definition (13), a p-dependence, and it is
nothing but the photonic part of the QFVS [9] for an otherwise free electron.

This ansatz is a sort of BOA [16] in the Volkov–Coulomb problem. In the original BOA for
a molecule, the motion of the electrons is treated as rapidly varying degrees of freedom while
that of the nuclei are slowly varying ones. Therefore, the wavefunction of a molecule is written
as the product of the electronic part, which contains the instantaneous nuclear coordinates as
parameters, and the nuclear part the Hamiltonian of which contains an additional potential term
that is induced by the effects of the electrons. In the problem at hand, we treat the photon mode
as rapidly varying degrees of freedom, so its states depend on the momentum of the electron
as a parameter, as if the electron were free. This is reasonable in a strong light field, where the
probability for stimulated emission and absorption of laser photons is large. The fluctuating
photon number in the photon state |n〉d implies that this state represents a photon cloud dressing
the electron due to stimulated interactions. As we will see later, like the electron cloud in a
molecule, which induces an extra potential for the nuclei’s motion, the photon cloud in the
present problem will affect the slowly varying degrees of freedom (the motion of the electron)
by modifying (or dressing) the atomic potential seen by the electron. (The physical conditions
under which this approximation is good will be discussed after we obtain the solutions.)

Thus, with the BOA ansatz equation (15), equation (14) reads

[p2 − p2
0 + m2

e + 2C(n + 1
2 )− 2e2g2(p · εc)(p · ε∗

c )C
−1]|n〉dψ(p)

+2me

∫
d3p′

(2π)3
U(p − p′)|n〉′dψ(p′) = 0. (17)

The quantities p0 and p can be interpreted as the total energy and the total momentum of the
system, respectively.
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By defining

p0 = me + E + κω p = P + κk (18)

where

κ = [(me + E)ω − P · k]−1[C(n + 1
2 )− e2g2(P · εc)(P · ε∗

c )C
−1] (18′)

we introduce the energy E and the momentum P for the electron, which is not on the free
electron mass shell. By introducing

P ′ = p′ − p + P (19)

as the new integration variable and the new label for the unknown wavefunction, we have the
following equation:

(P 2 − 2meE)|n〉dψ(P ) + 2me

∫
d3P ′

(2π)3
U(P − P ′)|n〉′dψ(P ′) = 0. (20)

By multiplying 〈n|d through from the left, the above equation becomes

(P 2 − 2meE)ψ(P ) + 2me

∫
d3P ′

(2π)3
U(P − P ′)F (P − P ′)ψ(P ′) = 0 (21)

where

F(P − P ′) ≡ 〈n|dn〉′d (22)

which we call the distortion factor.
In summary, under the ansatz, equation (15), the solutions to the Schrödinger-like equation,

i.e. equation (2), of the combined electron-laser mode system are given by the following
wavefunctions:

�(r) = V
− 1

2
e

∫
d3P

(2π)3
exp{i[−kNa + (P + κk) · r]}|n〉dψ(P ). (23)

Since the Schrödinger-like equation is not an eigenvalue equation, it does not have a number
as the energy eigenvalue. Instead, we can determine its effective energy eigenvalue, which is
indeed the total energy for the combined system with the exclusion of the mass energy of the
NR electron [14]. The effective energy eigenvalue E is determined as

E = E + κω. (24)

In the large photon-number limit, the solution has the form

�(r) =
∫

d3P

(2π)3
|Pn〉ψ(P ) (25)

where |Pn〉 is the following state in the photonic Fock space:

|Pn〉 =
∑
j

exp{i[(P + (up − j)k) · r]}Jj (ζ, η, φξ )
∗e−ij (φξ+�

2 )|n + j〉 (25′)

with

Jj (ζ, η, φξ ) =
∞∑

m=−∞
J−j−2m(ζ )Jm(η) exp(2imφξ)

ζ = 2|e|&
meω

|P · ε| η = 1
2up cos ξ φξ = arg(P · ε)− �

2
.

The energy level of the state is

E = E + (n + 1
2 )ω + upω (26)
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where upω is the ponderomotive energy.
We call the state, expressed by equation (25), together with equation (25′), a quantum-

field Volkov–Coulomb state. We note that, in momentum space, the quantum-field Volkov–
Coulomb state is factorized into the product of the photonic part, |Pn〉, and the electronic part,
ψ(P ); and the photonic part |Pn〉 is formally the same as that for the QFVS for an otherwise
free electron (with momentum P ), interacting with a single laser mode [9]. However, the
relation between the energy me +E and the momentum P is different in the two cases: for the
Volkov case, they are on the mass shell of the electron, but as mentioned earlier, here E and
P do not satisfy the on-mass shell condition.

More importantly, in the present Volkov–Coulomb case, the electronic part ψ(P ) is no
longer a plane wave as in the Volkov case, instead it satisfies the integral equation, equation (21),
with the distortion factor equation (22) given, in the large photon-number limit, by

F(q) = J0(µ|q · ε|) µ ≡ 2|e|&
meω

= 2

√
up

meω
(27)

where 2& is the classical amplitude of the light field, and J0(x) is the zeroth-order Bessel
function. (The details of the derivation are given in appendix A.)

By combining equations (21) and (27), we see that the electronic part, ψ(P ), of the
Volkov–Coulomb wavefunction in momentum space satisfies the following integral equation:

P 2

2me
ψ(P ) +

∫
d3P ′

(2π)3
U(P − P ′)J0(µ|(P − P ′) · ε|)ψ(P ′) = Eψ(P ). (28)

We note that in a different approach, Janjusevic and Mittleman [8] obtained a similar integral
equation. Their result was an approximation to our equation (28), with J0(µ(P − P ′) · ε)

replaced by J0(µP · ε)J0(µP ′ · ε), which is the first term of the expansion from the addition
theorem for the former.

To see the physical meaning of the integral equation (28), we introduce the distorted
atomic potential

U ′(P ) = U(P )F (P )

U ′(r) =
∫

d3r′3 U(r − r′)F (r′).
(29)

Then, we also introduce the Fourier transform of ψ(P ), which we denote as ψ(r). It satisfies
the Schrödinger equation with the distorted potential[

(−i∇)2
2me

+ U ′(r)
]
ψ(r) = Eψ(r) (30)

as if there is no light field. This equation can be used to determine the spectrum of the electronic
energy E, which will give us the effects of the laser field in changing the electronic energies.
On the other hand, it is tempting to interpret ψ(r) as the distorted atomic wavefunction. In
this regard, we have to be careful, keeping in mind that in the quantum field Volkov–Coulomb
state, equations (23) or (25), the electronic part and the photonic part, are directly coupled
in momentum (rather than coordinate) space. It is interesting to obtain the distorted atomic
potential U ′(r) explicitly. In the case of a hydrogen atom, we have obtained U ′(r) explicitly.
Since we are not going to proceed from equation (30), the result and the derivation of U ′(r)
for the hydrogen atom is shown in appendix B.

We note that we have employed only the NR and BOAs; no other approximations
are involved. In addition, we have actually shown a very general theorem, expressed by
equations (29) or (28), that the dressing of the atomic potential due to the presence of a laser field
involves a universal distortion factor F(q) = J0(µ|q · ε|) in momentum space, independent
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of the atomic potential. By exploring this theorem, it is possible to devise a general procedure
for solving the integral equation (28) in the case when the atomic wavefunctions are known in
the absence of the light field, which will be presented in next section.

4. Solving the distorted atomic states in the momentum space

The integral equations (21) and (28), belonging to Fredholm integral equations of the third
kind, have solutions at certainE values. There are a number of solution techniques, such as the
iteration method, the perturbation method, or expanding the kernel into factorized series. In
the following, we develop an algebraic method that explores the knowledge of wavefunctions
in the absence of the light field.

To understand the integral equation (28), we first consider the no-light case. By setting
µ = 0, we have

P 2

2me
)(P ) +

∫
d3P ′

(2π)3
U(P − P ′))(P ′) = E(0))(P ) (31)

whereE(0) means the energy eigenvalue of the atom. This equation is exactly the wave equation
satisfied by the Coulombic wavefunctions in momentum space.

Usually, the wavefunction for an atomic electron, described by the Schrödinger equation
in a central potential U(r),[

1

2me
(−i∇)2 + U(r)

]
)(r) = E(0))(r), (32)

has the following structure:

)(r) = Rnl(r)Ylm(θ, ϕ) (33)

where Ylm(θ, ϕ) are spherical harmonics and Rnl(r) are the radial wavefunctions satisfying
the following radial equation:

d2

dr2
(rRnl(r)) +

{
2m[E0 − U(r)] − l(l + 1)

r2

}
rRnl(r) = 0. (34)

This kind of atomic wavefunction is quite general for a NR atomic electron, such as a hydrogen
atom, an H− ion, and an electron in a heavy atom described by a model potential. The potential
can even be a nonlocal potential such as the Hartree–Fock potential for the xenon atom. Since
the angular part of the wavefunction is exactly known, the wavefunctions are usually given
only in the radial part. In several cases, the radial wavefunctions are analytical; while in most
cases, they are given numerically with satisfactory precision. In real applications, we assume
that the wavefunctions of the atom in a vacuum are known, then we can solve equation (28)
even though the atomic potential U(r) is not given explicitly. For example, we may extract
the radial NR wavefunctions for a xenon atom out of the Dirac–Hartree–Fock model from the
major component of the relativistic bispinor wavefunctions, without worrying about what the
self-consistent model-potential would look like.

The Fourier transform of the wavefunctions in equation (33) is usually obtained in the
spherical coordinates of momentum space:

)(P ) = 4π(−i)lRnl(P )Ylm(θ
′, ϕ′) (35)

with

Rnl(P ) =
∫ ∞

0
r2 drRnl(r)jl(P r) (36)
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where jl(P r) are spherical Bessel functions indexed by the orbital angular momentum quantum
number l, and θ ′, ϕ′ are the angular coordinates in momentum space. We assume that these
momentum wavefunctions for the atom in a vacuum are known and that they satisfy the integral
equation, equation (31).

For µ 
 1, which may include the near-threshold cases where the electron is definitely
NR, and the low-intensity fields where up 
 1, we can adopt the no distortion approximation
to express wavefunctions of the combined system as

ψ(P ) ≈ )(P ) (37)

and

�(r) ≈ V
− 1

2
e

∫
d3P

(2π)3
∑
j

exp{i[(P + (up − j)k) · r]}Jj (ζ, η, φξ )
∗

×e−ij (φξ+�
2 )|n + j〉)(P ). (38)

This approximation can be used in the description of the photoelectrons in low ATI peaks
and high Rydberg states in the radiation field, since the dominant momentum components of
the wavefunctions are very small. The expression, equation (38), can be regarded as a good
approximation for near-threshold electrons in a strong radiation field, or for atomic-bound
electrons in low-intensity radiation fields with up 
 1.

When µ is not small, we cannot adopt the approximation, equation (37). However, we
are able to derive a set of equations for ψ(P ). In general, we need to assume that a complete,
orthonormal set of momentum-space wavefunctions, )α(P ) (α = 1, 2, . . .), of the form of
equations (35) and (36) are known for the atomic electron in the absence of the light field. They
satisfy equation (31) with corresponding energy eigenvalue Eα . Using {)α(P )} as the basis
set and equation (31), we replace the potential U(P ) by its spectrum resolution and rewrite
the integral equation (28) as

∑
γ

E(0)
γ )γ (P )

∫
d3P ′

(2π)3
)γ (P

′)∗J0(µ|(P − P ′) · ε|)ψ(P ′) = Eψ(P ). (39)

The advantage of using equation (39) is that it has no explicit dependence on the atomic
potential. We can also expand the distorted momentum wavefunction ψ(P ) as

ψ(P ) =
∑
α

ψα)α(P ). (40)

The expansion coefficients ψα and the energy eigenvalue E can be obtained by solving the
following system of linear algebraic equations:∑

α

Fαβψβ = Eψα (41)

where the distortion matrix elements Fαβ are defined by

Fαβ =
∑
γ

E(0)
γ

∫
d3P

(2π)3
d3P ′

(2π)3
)α(P )

∗)γ (P
′)∗J0(µ|(P − P ′) · ε|))γ (P ))β(P

′). (42)

When the basis set is given by equation (35), the distortion matrix elements can be separated
into the radial part and the angular part

F(n1l1m1)(n2l2m2) = i(l1−l2)24δm1m2F
(m1)

(n1l1)(n2l2)

F
(m)

(n1l1)(n2l2)
=

∑
n3l3

E
(0)
n3l3

∫
dP dP ′P 2P ′2Rn1l1(P )Rn3l3(P

′)Rn3l3(P )Rn2l2(P
′)J (m)l1l2l3l3

(P, P ′)

(43)
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where the angular matrix elements J (m)l1l2l3l3
(P, P ′) are defined by

J
(m)
l1l2l3l4

(P, P ′) =
∫ 1

−1
dx

∫ 1

−1
dx ′J0(µ(Px − P ′x ′))Y ∗

l1m
(θ, 0)Yl2m(θ

′, 0)Y ∗
l3m
(θ ′, 0)Yl4m(θ, 0)

(44)

where x ≡ cos θ ≡ |ε| · P /P , and |ε| is the absolute-valued vector of the polarization vector.
The product of two spherical harmonics can be decomposed into a linear combination of

single spherical harmonics

Yl1m1(θ, ϕ)Yl2m2(θ, ϕ) =
√

{l1}{l2}
4π

|l1+l2|∑
l=|l1−l2|

{l}−1/2Cl0l10l20Cl(m1+m2)
l1m1l2m2

Yl(m1+m2)(θ, ϕ) (45)

with Clebsch–Gordan coefficients, where {l} ≡ 2l + 1. Especially, when m1 = −m2, we have

Yl1(−m2)(θ, ϕ)Yl2m2(θ, ϕ) =
√{l1}{l2}

4π

|l1+l2|∑
l=|l1−l2|

Cl0l10l20Cl0l1(−m2)l2m2
Pl(cos θ) (46)

where Pl(x) is the lth order Legendre polynomial. With the help of equation (46), we simplify
expression (44) as

J
(m)
l1l2l3l4

(P, P ′) =
√{l1}{l2}{l3}{l4}

(4π)2

|l1+l4|∑
l=|l1−l4|

|l2+l3|∑
l′=|l2−l3|

Cl0l10l40Cl
′0
l30l20

×Cl0l1(−m)l4mCl′0l3(−m)l2m
∫ 1

−1
dx

∫ 1

−1
dx ′ J0(µ(Px − P ′x ′))Pl(x)Pl′(x ′). (47)

The addition theorem of Bessel functions,

J0(x − y) =
∞∑
j=0

(2 − δj0)Jj (x)Jj (y),

can be applied to equation (47) to decouple the double integral. Thus, in the case of l4 = l3,
the angular matrix elements simplify as

J
(m)
l1l2l3l3

(P, P ′) =
√{l1}{l2}{l3}

(4π)2

|l1+l3|∑
l=|l1−l3|

|l2+l3|∑
l′=|l2−l3|

Cl0l10l30Cl
′0
l30l20

×Cl0l1(−m)l3mCl′0l3(−m)l2m
∞∑
j=0

(2 − δj0)Glj (µP )Gl′j (µP
′) (48)

where

Glj (P ) =
∫ 1

−1
Pl(x)Jj (P x) dx

=
∞∑
r=r0

(−1)r
(
j + 2r

r

)
1 + (−1)j+2r+l

2j+2r−l
(
j+2r+l

2 )!P j+2r

(j + 2r + l + 1)!( j+2r−l
2 )!

(49)

which have a nonvanishing value only when j + l = even. Here r0 = (l − j)/2. From the
above equations, we find that l and l′ have equal parity. Now, we define the following quantity:

G(m)l1l2j
(P ) =

√{l1}{l2}
4π

|l1+l2|∑
l=|l1−l2|

Cl0l10l20Cl0l1(−m)l2mGlj (µP ) (50)
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in terms of which the angular matrix elements are expressed as elements as

J
(m)
l1l2l3l3

(P, P ′) =
∞∑
j=0

(2 − δj0)G(m)l1l3j
(P )G(m)l3l2j

(P ′). (51)

Substituting this into equation (43), we have

F
(m)

(n1l1)(n2l2)
=

∑
n3l3

E
(0)
n3l3

∞∑
j=0

(2 − δj0)g
(m)
n1l1n3l3j

g
(m)
n3l3n2l2j

(52)

where

g
(m)
n1l1n2l2j

=
∫

dP P 2Rn1l1(P )Rn2l2(P )G(m)l1l2j
(P ). (53)

The eigenvalue equation (41) with coefficients given by (52) is the equation we need to solve
in order to obtain the atomic spectrum and wavefunctions in the distorted potential.

5. Application to two-level atoms

In this section we apply the solution scheme developed in the above sections to a two-level
atom. An advantage of using this approach to an n-level atom is that the orbital information,
such as angular momenta and radial wavefunctions of a noninteracting atom, will all go into
the calculation of wavefunctions and energy levels of the atom in the photon field. The atom
treated here is assumed to have only n1s and n2p states. It is easy to follow the steps outlined
here to work out an n-level atom. The detailed numerical calculation on real atoms will be
published in papers in the near future.

5.1. Single-orbit photon coupling

A single-orbital angular momentum of an electron and multi-photon coupling is described by
a Legendre–Bessel integral defined by equation (49).

For a two-level atom with orbits n1s and n2p, we only need the integrals G0j (P ), G1j (P )

and G2j (P ). After carrying out the integration we have the following explicit expressions†:

G0j (P ) = 2

P

∫ P

0
Jj (P ) dP (j = even)

G1j (P ) = 2

P

∫ P

0
dP Jj (P )− 2

P 2

∫ P

0
dP

∫ P

0
dP Jj (P ) (j = odd)

G2j (P ) =
[

2

P

∫ P

0
dP − 6

P 2

( ∫ P

0
dP

)2

+
6

P 3

( ∫ P

0
dP

)3]
Jj (P ) (j = even).

(54)

The first term in G1j (P ) is not G0j (P ) because the latter has an even j index.
The integrals of Bessel functions can be linearly expressed by lower-order Bessel functions

except the zeroth-order one which has a more complicated expression:∫ P

0
J2n(P ) dP =

∫ P

0
J0(P ) dP − 2

n−1∑
k=0

J2k+1(P )

∫ P

0
J2n+1(P ) dP = 1 − J0(P )− 2

n∑
k=0

J2k(P )

∫ P

0
J0(P ) dP = P J0(P ) +

πP

2
[J1(P )H0(P )− J0(P )H1(P )].

(55)

† These expressions are the result of manipulating the Legendre–Bessel integral using the Chebyshev spherical-Bessel
integral [19].
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In computation, equations (54) and (55) can be carried out in a simple matrix form, with
matrices acting on a vector

J ≡ (J0(P ), J1(P ), J2(P ), J3(P ), J4(P ), J5(P ), . . . , 1)T . (56)

For example, up to j = 5, we have

∫ P

0
dP ≡




∫ P

0 dP 0 0 0 0 0 0
−1 0 0 0 0 0 1∫ P

0 dP −2 0 0 0 0 0
−1 0 −2 0 0 0 1∫ P

0 dP −2 0 −2 0 0 0
−1 0 −2 0 −2 0 1
0 0 0 0 0 0

∫ P

0 dP




( ∫ P

0
dP

)2

=




(
∫ P

0 )
2 0 0 0 0 0 0

− ∫ P

0 0 0 0 0 0
∫ P

0

(
∫ P

0 )
2 + 2 0 0 0 0 0 −2

−3
∫ P

0 4 0 0 0 0
∫ P

0

(
∫ P

0 )
2 + 4 0 4 0 0 0 −4

−5
∫ P

0 8 0 4 0 0
∫ P

0

0 0 0 0 0 0 (
∫ P

0 )
2




( ∫ P

0
dP

)3

=




(
∫ P

0 )
3 0 0 0 0 0 0

−(∫ P

0 )
2 0 0 0 0 0 (

∫ P

0 )
2

(
∫ P

0 )
3 + 2

∫ P

0 0 0 0 0 0 −2
∫ P

0

−3(
∫ P

0 )
2 − 4 0 0 0 0 0 (

∫ P

0 )
2

(
∫ P

0 )
3 + 8

∫ P

0 −8 0 0 0 0 −4
∫ P

0

−5(
∫ P

0 )
2 − 12 0 −8 0 0 0 (

∫ P

0 )
2

0 0 0 0 0 0 (
∫ P

0 )
3



.

(57)

In the elements of the last two matrices dP has been omitted for the purpose of notation
simplification. One can formally enlarge these matrices to the cases with any positive j
number without difficulties just by a simple inspection. These matrices will replace the multiple
integration in equation (54). One can see from these matrices that the core calculation is only
carried out on the multiple integrals of J0(P ), which appear in the first column, while those
that appear in the last column are just integrals on the constant number 1.

5.2. Two-orbit photon coupling

A two-orbital angular momenta of an electron and multi-photon coupling is described by a sum
of Legendre–Bessel integrals multiplied by Clebsch–Gordan coefficients, i.e. equation (50).
For the two-level atom with s and p states we need only

G(0)01j (P ) =
√

3

4π
C10

0010C10
0010G1j (µP ) =

√
3

4π
G1j (µP )

G(0)10j (P ) =
√

3

4π
C10

1000C10
1000G1j (µP ) = G(0)01j (P ) =

√
3

4π
G1j (µP )

G(0)11j (P ) = 3

4π
[C00

1010C00
1010G0j (µP ) + C10

1010C10
1010G1j (µP )

+C20
1010C20

1010G2j (µP )] = 1

4π
[G0j (µP ) + 2G2j (µP )].

(58)



Quantum electrodynamic approach to the Volkov–Coulomb problem 7967

5.3. Radial integrals

Now we use indices 1 for n1s, 2 for n2p. The radial integrals defined by equation (53) can be
specialized to

g
(0)
12j =

∫
dP P 2R1(P )R2(P )G(0)01j (P )

g
(0)
21j =

∫
dP P 2R2(P )R1(P )G(0)10j (P ) = g

(0)
12j

g
(0)
22j =

∫
dP P 2R2(P )R2(P )G(0)11j (P ).

(59)

5.4. Distortion matrix elements

We can always set the energy level of the n1l1 state as zero while that of the n2l2 state as E(0),
where the super index (0) means the energy level for the atom (without the light field). The
distortion matrix elements given by equations (43) and (52) now simplify as

F11 = 24E(0)
∞∑
j=0

(2 − δj0)g
(0)
12j g

(0)
21j

F12 = −i24E(0)
∞∑
j=0

(2 − δj0)g
(0)
12j g

(0)
22j

F21 = i24E(0)
∞∑
j=0

(2 − δj0)g
(0)
22j g

(0)
21j = F ∗

12

F22 = 24E(0)
∞∑
j=0

(2 − δj0)g
(0)
22j g

(0)
22j .

(60)

The energy eigenvalues of the two-level atom are

E1,2 = 1
2

[
F11 + F22 ±

√
(F11 − F22)2 + F12F

∗
12

]
. (61)

In the case F12F
∗
12 
 (F11 − F22)

2, the energy levels read

E1 = F11 +
F12F

∗
12

2(F11 − F22)2

E2 = F22 − F12F
∗
12

2(F11 − F22)2
.

(62)

By inspecting the structure of the matrix elements, the physical meaning becomes immediately
clear. The coupling of the two orbits in the light field are mainly embodied in F11, while F22

remains as the self-coupling of the second orbit and F12 is the cross term. TheE1 is the upward
energy shift of the first orbit when interacting with both the second orbit and the light field,
with the F22 −F11 − F12F

∗
12

(F11−F22)2
being the difference of the two energy levels of the atom in the

light field.

6. Discussion

6.1. Remarks

The following remarks should be noted.
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(1) In the above method, we only need to know the atomic wavefunctions which are free of the
radiation field; no explicit knowledge of the atomic potential is needed, so self-consistently
constructed atomic wavefunctions can be directly used.

(2) In our QED treatment, the above results are obtained only within the NR and BO
approximations. No other approximations are involved. It is amusing to note that the
QED approach of the Volkov–Coulomb problem, in which the laser mode is treated as a
part of the dynamical system, leads to a treatment that is simpler than the usual one in
which the radiation field is classical.

6.2. Possible applications

Possible applications are as follows.

(1) In section 5 we have shown explicitly how to work out the wavefunctions of a two-level
atom in a radiation field. By the same technique, the wavefunctions of a three- or four-
level atom in a radiation field can also be worked out explicitly. In textbooks, the laser
mechanism is described by models of two-, three-, or four-level atoms in a time-dependent,
external field. In contrast, our approach to these atomic models in a radiation field is time
independent. Energy eigenvalues for the interacting system can be obtained. This feature
is extremely good for treating transitions in laser physics. Another advantage of this
approach is that all known orbital information is built into the model of few-level atoms.
The angular orbital quantum numbers and numerical radial wavefunctions are used in the
determination of the coefficients of the linear algebraic equation set.

(2) The Volkov–Coulomb wavefunctions of Rydberg states can be used in the analysis of
the fine structure of ATI peaks discovered by Freeman et al [3]. Their experiment
showed that when xenon gas was exposed to strong laser light with variant pulse widths
passing from the long-pulse to the extreme short-pulse limit, each low-energy ATI peak
in the photoelectron energy spectrum broke up into a series of narrow peaks, which were
recognized as resonance enhancements due to excited orbits of a xenon atom. The fine
structure of ATI peaks showed clear relations with the energy levels of atomic excited
states. The Volkov–Coulomb wavefunctions can be used in the calculation to determine
the positions and intensities of sub-ATI peaks.

(3) Results in this paper are a preparation for future research on the exact solutions to
the Volkov–Coulomb problem. Obtaining Volkov–Coulomb wavefunctions with BOA
provides physical and mathematical insights into the Volkov–Coulomb problem. The
techniques used here with further development will be used in searching for exact solutions
to the Volkov–Coulomb problem. Future results from exact treatments will be compared
with the current results.
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Appendix A

The distortion factor is derived as follows:

F(P ,P ′) ≡ 〈n,P |dn,P ′〉d
=

∑
m

〈n,P |dm〉〈m|n,P ′〉d

=
∑
j

Jj (ζ, η, φξ ) exp[ij (φξ + �/2)] exp[−ij (φ′
ξ + �/2)]Jj (ζ

′, η, φ′
ξ )

∗

=
∑
j

Jj (ζ, η, φξ ) exp(ijφξ ) exp(−ijφ′
ξ )Jj (ζ

′, η, φ′
ξ )

∗

= J0(µ|(P − P ′) · ε|), (A.1)

where we have used the notations of generalized Bessel functions and the addition theorem
for Bessel functions.

Appendix B

To see more explicitly how the stimulated interactions between the electron and the laser mode
distort (or dress) the atomic potential experienced by the electron, let us examine the case of
a hydrogen atom in detail. In this case, U(r) = −e2/r .

(1) We assume the laser field is linearly polarized in the z-direction: ε = ez. Then,
J0(µ|q · ε|) = J0(µ|qz|). It is easy to verify that its Fourier transform

F(r) =
∫

d3q

(2π)3
J0(µ|q · ε|) exp{iq · r}

is given by

F(r) = 1

π
δ(x)δ(y)

θ(µ2 − z2)√
µ2 − z2

where the θ -function is the Heaviside step-function. So the distorted Coulomb potential in
this case is

U ′(r) =
∫

d3r′ U(r − r′)F (r′)

= 1

π

∫ µ

−µ
dz′ −e2√

x2 + y2 + (z− z′)2
1√

µ2 − z2
. (B.1)

This is nothing but the Coulomb potential of a linear charge on the z-axis between z = −µ and
µ with the distribution ρ(z) = θ(µ2 − z2)/π

√
µ2 − z2. For |z| > µ, an analytic expression

for the distorted Coulomb potential can be expressed in terms of a hypergeometric function

U ′(r) = − e2√
r2 − µ2

F

(
3

4
,

1

4
; 1; −4µ2(x2 + y2)

(r2 − µ2)2

)
.

(2) In the case when the laser field is circularly polarized in the y–z plane, i.e. ε =
(ey + iez)/

√
2, we have F(q) = J0(µ

√
(q2
y + q2

z )/2). Its Fourier transform is thus

F(r) = δ(x)δ(ρ − µ/
√

2)

ρ
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with ρ =
√
y2 + z2. The convolution of F(r) and U(r) gives us the distorted Coulomb

potential

U ′(r) = −e2

2π

∫ 2π

0

dφ√
x2 + (y − µ√

2
cosφ)2 + (z− µ√

2
sin φ)2

. (B.2)

This is nothing but the Coulomb potential of a uniformly charged linear ring in the y–z plane
with radius µ/

√
2 and total charge e. For ρ < µ/

√
2, it can be expressed by a hypergeometric

function

U ′(r) = − e2√
r2 + µ2/2

F

(
3

4
,

1

4
; 1; 2µ2(y2 + z2)

(r2 + µ2/2)2

)
.

Another analytic expression is

U ′(r) = −2e2

π

1√
x2 + (ρ + µ√

2
)2
K




√√√√
√

8µρ

x2 + (ρ + µ√
2
)2


 .

Here K is the complete elliptic integral of the first kind.
The above distorted (or dressed) Coulomb potentials, equations (B.1) and (B.2), have

appeared in the literature [17,18,20] using several different approaches. For example, in [20]
the strong laser field is treated as a classical radiation background, with the vector potential
in, say, the dipole approximation. For the atomic electron, a semiclassical time-dependent
Schrödinger equation in, say, the momentum gauge, is used. It is first transformed to
the ‘Kramers reference frame’ [21], a moving frame that follows the quiver motion of the
classical electron. Then the Floquet method together with an iterative procedure leads, in
the high-frequency limit, to a time-independent Schrödinger equation that is identical to our
equation (30) with the same distorted Coulomb potentials (B.1) and (B.2) [20].
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